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ABSTRACT

The paper gives conditions on a family of matrices which
guarantee that some matrix in the family will have a multiple
eigenvalue. 1In particular, the main theorem states exactly which
dimensions admit k dimensional subspaces of matrices for which
all nonzero elements have distinct eigenvalues.

This question arises naturally in the theory of first order
hyperbolic systems of partial differential egquations; the main
theorem, in this context, tells exactly for which integers n an

n xn syste- in k space variables may be strictly hyperbolic.
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SIGNIFICANCE AND EXPLANATION

Hyperbolic systems of partial differential equations are
those for which the Cauchy problem is well posed.

Strictly hyperbolic systems are a subclass for which: t)
solvability of the Cauchy problem is stable under perturbation
2) singularities propagate along curves 3) the condition of
hyperbolicity can be verified, (i.e. to check if a systeﬁ is
strictly hyperbolic one need only verify an algebraic condition).

In this paper, it is shown that for first order n x n
systems in more than two space variables, strict hyperbolicity
can be obtained only for special dimensions n. For example,
with 3 space variables there exist strictly hyperbolic n xn
systems if and only if n = 0, + 1 modulo f.

The paper also includes many related results which are more

algebraic in nature.
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ON THE CROSSING RULE

S. Friedland®’l, J.W. Robbin**, and J.H. Sylvester™>1:2

1, Introduction.

The classical theorem of Wigner-Von Neumann [1927] shows that the
real symmetric matrices (resp. hemitian matrices) with a multiple eigenvalue fo

a real algebraic variety of codimension 2 (resp. 3) in the space of all

real symmetric matrices (resp, all hemitian matrices) . This implies

L the famous '"non-crossing'' rule which asserts that a ''generic" one-

a parameter family of real symmetric matrices (or two-parameter family of
Hemmitian matrices) contains no matrix with a multiple eigenvalue, Our
aim here is to give conditions on a family of matrices which force a

. "crossing" of the eigenvalues; i.e, assure that the family contains a
member with a multiple eigenvalue, Our main result is:

There is a (k+l)-dimensional vector space of (n X n) real matrices

such that each non-zero matrix has no multiple eigenvalue if and only if

k < o(n) where o(n) is the function defined below,

CENMES I it 0 AL AR A ATEeC e

For n=2 (mod 4) wehavethat o(n) =2; hence any
3-dimensional vector space of symmetric (n X n) matrices contains a
non-zero matrix with a multiple eigenvalue, This result is due to
: lax [1981]."

The problem arises naturally in the theory of symmetric first-order
1 hyperbolic systems with constant coefficients (see John [1977]); our
i ‘ theorem says exactly which dimensions admit examples of such systems

having only simple characteristics.

* Hebrew University - Jerusalem, University of Wisconsin-Mi lwaukee.
**Department of Mathematics, University of Wisconsin-Madison.

1
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

?‘mis material is based upon work
I .suwported the National Scien
Foundation under Grant No. MCS-7927062, I"bdt.)yl. ce
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Our theorem uses the work of Adams [1962] and is thus imtimately
connected with the problem of vector fields on spheres. Thus in §2 we
formulate a kind of non-linear Radon-Hurwitz-Adams theory and show how
it follows easily from the work of Adams, In §3 we state and prove various
forms of our main theorem. In §4 we consider the complex case and also
the real case where the eigenvalues are allowed to be complex, Finally
in §5 we remark that in the Hermitian case, the '"middle eigenvalue'" must
cross if the dimensions are right .

The reader should note the general topological nature of the results,
Namely all five theorems A, B, C, D, E below prove that there is a
(k+1)-dimensional vector space of matrices having some property if and only

if there is an odd continuous map from the k-sphere into the matrices with

this property.




§ 2, Families of invertible matrices,

, de Denote by Mm(R) the vector space of all real m by m matrices -
; and by GL(m,R) the open subset of invertible matrices. For A ¢ Mm(R)
- let A" e M_(R) dencte the transpose of A and let Ie¢ M_(R)

denote the identity matrix, For a € Rk+1, |a] denotes the usual

X denotes the k-sphere ja] =1, and rP

Euclidean norm, S
denotes the real projective k-space obtained from Sk by identifying

L antipodal points,

- Let p(m) denote the Radon-Hurwitz number:

& for:

3 m = (2a +1)2°+4

p(m) = 2%+ &d

where a, c,d are integers and c=0,12, 3,

THEOREM A: Forintegers m > 0 and k =0 the following are

equivalent:

@Al k < p(m);

- (A2) _ thereexist Ay -+, A ¢ M_(R)  with:

"
Ai +A1 = 0
AiAi = =

AiAj +A,A1 =0

3 for 1,J=1 e,k with 1{# j;
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(A3) . there is a linear map:

o: R — M_(R)

such that:

o (a)x| = |a] |x]

k+1

for ae R and X e Rm:

(Ad) there is a linear map:

o: RY —> M ®)
such that:

o (R<*\0) c GL(m, R);
(A5) there is an odd continuous map:

9: 85 = GL(m,R);

(A6) the Whitney sum of m _ copies of the canonical line bundle on BPk

is stably trivial: 1i.e, there exist continuous maps:

xizsk—9Rn 1i=1c°e,n

such that  x,(a), -, xn(a) form a basis for R"™ for each ¢ ¢ Sk

and. °

l’ ooo’m

xi(-a) = -xi( a) i

x,(-a) = x,(a) i=m+l, ece,n;.

(A7) this whitney sum is trivial; i,e. (A6) holdswith m = n;

(A8) thereare k pointwise linearly independent vectorfields on the
sm--l

.(-m-l)-sphere




Proof: All of this is either well-known or easily obtained from well-known

results, To orient the reader we discuss the proof but all we need for

theorem B are the implications (A6) => (Al) = (A3).

The proof of (Al) &> (A2) & (A3)  is due to Radon [1922] and
Hurwitz [1923]. We note (as they did)that (A2) &> (A3) is quite easy
namely:

o(a) = a,l + zaiAi
satisfies (A3) ifthe A satisfy (A2) while:
A =0y ole,)

& ( with €pr** & an orthonormal basis for Rk+1

) satisfy (A2)
if o satisfies (A3). The point here is that (A2) says that the Ai

afford a representation of the Clifford Algebra on k generators (though

apparently Radon and Hurwitz did not know about Clifford [1876] ). These

algebras are semisimple and hence (by Wedderburn theory) the simple ones

are matrix algebras over the reals, complexes, or quatemions and each

| saomadds B ol

representation is a multiple of the standard representation. In fact, the
Clifford algebras are easily classified and the classification yields the
numbers p(m) . For a nice exposition see Porteous [1969] .
The implication (A2) =3 (A8) is trivial; the vectorfields:
s™!l s p™ ! x > A x

are pointwise orthonormal. The converse implication is of course the

title theorem of Adams [1962].
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Of the remaining implications, the following are obvious:

(A5) <> (A7) (Let  x(a), ***,x (a) be the columns of @ (a));
(A7) => (A6) (Let m =n);

(3) => @4 => @5) (let o= 0|s").

We shall prove (A6) = (A7) and (using the main theorem of Adams
[1962] ) (A5) = (Al).

Proof of (A6) = (AT). Assume (A6)., We first showthat k < m,
The easiest method is via Steifel-Whitney classes (see e.g., Husemoller
[1966] for an exposition. ) let J - RPk denote the canonical

real line bundleand R ~ RPk

the trivial line bundle, The hypothesis
(A6) says that the n-plane bundle

E=]J]® - ®@J@ORO® **-® R
\’-V_J \——Y—N_/
m n-m

is trivial , Hence:
1=w®=w()".
But
w=14+w

where © ¢ H(RPX,Z,) issuchthat w*# 0. It follows immediately
that k < m, Now (A6) = (A7) follows immediately from the
following well known?
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PROPOSITION, Let F - P be an m-plane bundle over a k-dimensional
manifold, Assume that F is stably trivialand kX <m. Then F is
trivial,

For proof see e.g., Husemoller [1962] page 100; it can also be
proved using Sard's theorem as follows. We assume thatfor a ¢ P we
have:

Fo ® span(x, . (e),***, x, (a)) = R

where F_  is an m-dimensional subspace of R" and X :P— R"
are pointwise independent vector valued functions, We must find a
continuous map:
Q:P - GL(n)
such that:
Qa)F, = R™" x 0 CR".

By induction we assume n = m+l, and by Welerstrass approximation

we assume that F a is smooth i,e, that:

- 4
F, = & (a)
where ¢ :P —- s is smooth. Since dim(P) = k < m Sard's

theorem ylelds a constant vector:

ee ST\(£(P) U -¢(P).
We define an orthogonal transformation Q(a) : R" - R by:

S O N g S PP P C RN
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Q(a)|span(e, ¢ (a))' = identity;

Q(a)é(a) =e;

Q (a) span(e, ¢ (a)) = span(e, £ (a)).
This characterizes Q(a) uniquely if we demand that Q(a) should be
a rotation through angle less than = onthe plane span(e,¢(a)).
Clearly Q is continuous and:

Qa)F, = et
as required ,
Proof of (A5) => (Al). We shall reduce this to the following

theorem (1, 2) of Adams [1962]:

IHEOREM. _ If there is a continuous map:
£ ; RPMHK ppm-1 _ gm

such that the composite :

gm i RPm+k /Rpm-l g. sm

has degree one, then k< p(m). Here X/Y denotes the space

obtained from X by smashing the subset Y to a point so that there is

a natural identiﬁcatior_n

sm = RPm/RPm'l

and 1 denotes the inclusion:

i : RO"/RP™-1 . RpMHK/RPM-1

Given P Sk - GL(m) asin (A3) we must define f asin

the theorem of Adams. For xe¢ R® and ae RV with a # 0 let:

T

N
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Fla,x) = tla],wla/]lchx.
As: .
T(\a, \x) = IN] fla,x)

for AeR, N #0 themap f  inducesa map:
£ RPm+k\RPm'1 - ]RPm\RPm'l
Ixtend f toamap:

by mapping the point | H = RPm'1 of RPm+k/RPm'l into the point

Rrp™-1 of RP"/ Rrp™-1 . It is left to show that f is continuous

at H, Indeed for [a,x] ¢ RrpM*k

k

while from the continuity of ¢ and the compactness of S we have

>0 with
elx| = [9(a)x]

k

for all aes and x e RM . This gives:

2 2

e (1-1al®) = |o(a/|e])x|?;
so that £ a,x) approaches H C RP™ as (a,x) approaches
0 X Sm’1 . Thus £f 1is continuous at H as required. For fixed

k the map x -~ f(a,x) 1is linear invertible and hence of degree

a €S
+1, (If the negative sign occurs, compose with a reflection.) This

completes the proof.

we may assume that |a[2+ BY| 2
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§3. Families of matrices with simple eigenvalues,

We now state and prove our main theorem.

THEOREM B: For positive integers n and k the following are

equivalent:

(Bl) k < o(n) where o(n) is g_iven by:

o(nj=2 for n#0, £+l mod 8,
o(n) = p(4b) for n=8b, 8b: l;

(B2) either k =1 orelse thereis an integer m with k < 5(m) and

rl_ﬁg_lsoneof 2m-1, 2m, 2m+l;

(B3) there is a linear map:

k +1

Y: R -Mn(R)

such that each matrix ¥(a) (ac Rk+l\0) has n distinct real

eigenvalues:;

(B4)  there exists an odd continuous map:

k
$:8 -Mn(R)

such thateach Y(a) (a € Sk) has n distinct real eigenva.lues.

Proof:  The pattern of proof is (Bl) & (B2) and (B2) => (B3) =5 (B4)
= (B2).

(Bl) =>(B2) ., Assume k< o(n). If k# 1 wemusthave k < p(4b)
where n isoneof 8b-1, 8b, 8b+l, Take m = 4b,




i1

(B2) =-’ (Bl) . let n=8 +c where -3 s cs 4 and suppose
alsothat n=2m-}, 2m, or 2m+l, As p(4b) >1 there is nothing
toproveif k=1, Hence suppose 1<k< p(m). Then m=0 mod 4
so n=-1,0,1 mod8 whence m=4b so o(n) = p(m) > k as

required .

(B2) =p (B3) . First assume that k=1, Let An € Mn(R) be a
diagonal matrix with distinct eigenvalues say:

1 ]

o

n

and B € Mn(R) be the tridiagonal matrix which is zero on the diagonal

and one on suber and subdiagonal:

0 1 —
1 0 1
- 1 0
Bn = o
1
- 1 0 _

Take

wn(a) = “oAn + aan .

Now \yn(a) is symmetric and by expanding by minors in the last row:
2
Pn(k) = (k-nao)Pn_l(k) - @) Pn-z‘)‘)
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where ¢

P (\) = det(A-y (a)).

Thus if «, # 0 the polynomials P_(\) are pairwise orthogonal in
a suitable measure (see e.g, Freund [1960] page 60) and hence have
simple roots (Freund [1960] page 17); if @ =0 but aj# 0
this is obvious, Hence in either case the eigenvalues of \yn(a) are
distinct so that  y_: R® — M_(R) satisfies (B3).

Now assume k < p(m) and n=2m-1, 2m, or 2m+l,

By theorem A choose o R]H'1

- Mm( R) so that

o () o(a)” = Ialzl

for Q€ Rk"'l and define r: l?.k"'1 - MZm (R) by:
In I
r(a) =
o(a) o(a)

where Im € Mm(R) is the identity ,  One easily verifies that for

Ja] =1  we have:

F(e) r(a) = 21,

so that if De MZm (R) 1is a constant matrix with distinct eigenvalues

Ny, o0, A then:

r 2m
*
¥Y(a) = I'(a) DI (a)
has distinct eigenvalues ZXI, ""”‘Zm . Now vy (a) isa polynomial

of degree =2 in a; the trick is to choose D so that the zeroth

]
f’, order and second order terms drop leaving v (a) linearin « . Thisis
¢
[
s
¢

e TR Y WL . — e oo A - - 2 .2 PP UL AR I W 1R Y .
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accomplished by choosing:

D =
-A

0 qus(a)*J
Y (a) = .
2p(a)A 0

Note that the eigenvalues of Vv (a) are tZlalzvi 1=, m where

b

L so that:
& -

P 1 .
\

E

;»' Vi > vy > ese 2 m > 0 are the eigenvalues of A,

The map ¥y clearly satisfies (B3) when n =2m, Incase

n=2m+1 the map

¥(a) O
¥ (a) = 0 o

obtained from y by adding a zero row and column also satisfies (B3).
To handlethe case n =2m -1 _ let y(a) be defined as above but

let A have eigenvalues v} > v, > *** > v =0 .

Then =~ Y(a) has Vm = 0 as a double eigenvalue with eigenspace
spanned by the m-th and 2m-th columns of [(a) (assuming A =

diag( Voo, vm) ). The difference of these two columns is a constant
vector (i.e. independentof a) which spans a one-dimensional
subspace invariant by each ¢ (a). As vY(a) is symmetric the

2m-1

orthogonal complement E of this vector is also invariant by

each Y(a) and so:
Ezm'l

¥ (a) = ¥(a)|
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k +1

gives the required map y_: R —_ M?.m- 1(R) satisfying (B3).

(B3) => (B4). Take & =y|s¥,

(B4) = (B2). If k=1 there is nothing to prove hence assume k > 1,
Let kl(a) > eee > kn (a) be the eigenvalues and choose corresponding
unit eigenvectors vl(a) 2%, vn(a) :

q"(a)vi(a)= )‘i (a)vi(a) (1=19"" n).

kis

The vectors vi(a) are defined up to a sign and hence (since S
simply connected) may be taken to be continuous, Since Y(-a) = -y(a)
we have that ¢

M-a) = Ay jale)

for i=1, .-, n and hence that:
(*) vi(-a) = v, .., (a)
where the choice of + 1isindependent of a (by continuity). Changing
the signs of some of the v if necessary we may assume’
vil-a) = vy 141 (@)
for 1=12,+++,[n/2]  Dbutincase n 1is odd either sign may occur
in (*) for the middle eigenvalue (i = n-i+l). Take m=n/2 if n

iseven, m=4.1 if n isoddand the sign in (*) is + 'when i = n-i+l
and m = i ° if n is odd and the signis -, [Let:

X(a) = vi(a) - v, ,.(e) 1=, [n/2];
x(a) = vi(a) +v__, .\ (a) i =[n/2] #1,¢++,n;
xi(a) = vi(a) i =n-i+l,

Then g‘

eh a - & m A& m e m. _ M m m




xl(-a) = -xi(a) i=1,°,m
and !

xi(-a) = xi(a) i=m+l, e, n

so the Whitney sumof m copies of the canonical bundle over RPk is
stably trivial, Henceby (A6) <> (Al) wehave k < p(m) as
required .

The following example illustrates the difference between the cases

k=1 and k>1., Let ¢:81~M2(R) be given by :

cos o sin a
¢ (a) =
sin « -CO8 «a

so
¢ (a)vB) = v -B)
for
cos B
vB) = e
sin B

Thus the eigenvectors aregivenby v@®) with B =a/2, (@ +w)/2
and are not well-defined on s1 . This cannot happen for s“ with
k>1,

15
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§4. The complex case.

Now let F be one of thefields R (reals), @ (complexes),
or H (quatemions); Mm( F) betherealvectorspaceof m by m
matrices with entries from F ; A* denote the conjugate transpose of
Ace Mm(I-‘); and GL(m, F) = the invertible matrices in Mm(P) . Let
H (F) = {Be M (F):B= B } denote the Hermitian matrices ,
Define the Radon-Hurwitz-Adams-Lax-Phillips numbers p(m,F) by
table 1 for m=1, 2, 4,8 and forgeneral m by the conditions:
p((2a +1)m,P) = p(m,F);
p(lém,F) =o(m,F)+8,

We have the following generalization of theorem A :

THEOREM C, For integers m > 0 and k = 0 _the following are

equivalent:
(Cl) k<p(m,P);

(C2) there exist Al,...,Ake Mm(!') with:
*
Al-l-li.1 =0

AiAi = .l
AlAj +AjA1 =0
for 1ﬁj=l’..0'm.

(C3) there is a linear map:

o3 Rk-t-l

—- M (F)

‘e
h

P P S T

—— e e
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satisfying:

s(a)o(a)” = Ialz I;

(C4) there is a linear map:

o: RFH M_(F)
satisfzgng:
o(R"**\o0)c GL(m, F);

(C5) _there is an odd continuous map:

¢ : S*~GL(mF);

(C6) there are continuous maps:

e TR s Ty T e T T T
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x(-a) = x, (a)

(Ch (C6) holdswith m=n,

1= m +1, oo 0y n;

xiesk-l‘n (1=1, ..., 1Nn)
such that xl( &),..., xn( a) form a basis for F" as a vector space
over F and: .
xl(-a) = -xi(a) i=1 ..., m




i
! TABLE 1
’ IR c H

ti TABLE 2
X M (TF) R C

0 M (IR) 1 1

1 M, (€) 2 1
2 M, () 4 2
M, (1) 4 2

Mz(m) 8 4

& w

5 M4(¢) 8 4

6 Mg (IR) 8 8

-ttt

MR

7 Mg (R) 8 8

b S ame AEL A\ e 4

v“

:.“_‘i-
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: Proof: (C2)<&> (C3) => (C4) => (C5) and (C5)<&> (C6)<&>. (CT) are

- - exactly as before, (In (Cé) => (C7) note that the Steifel-Whitney

P class argument gives k < m dlmn( F).) The main theorem of Adams-Lax-
Phillips (1965) 1is (Cl)<=>(C4); the same argument (using (Al<&=> (A5)

- instead of (Al)<=>(A4)) shows (Cl)&> (C5).

b We discuss (Cl) =>(C2). The first two columns of table 2 list some

Clifford algebras (i.e. spaces Mm(l-") satisfying (C2)) for k=0,L1...,7.
Using the inclusions:

M, (R) C M, (@) C M (H) ,

M (®) C M, (R),

M (H) € M, (T),

we easily deduce the last three columns of table 2: an m in the column
labeled F and the row labeled k means that there is a Clifford algebra
on k generators in Mm(l-‘) « Now o(m,F) asdefinedintablel is
one greater than the largest value of k for which m appears under P
in table 2; this proves (Cl) => (C2) incase m=1,2, 4,8. The
general case follows from the following fact: if Mm( F) 1is a Clifford

algebra on k generators and b is any positive integer then: '

M, (F)= M_(F) ® M, (R)

is a Clifford algebra on k generators and:
Mlbm(r) = Mm(P)® Mlé(R)

is a Clifford algebra on k + 8 generators, (This is the ''periodicity

theorem'; see Porteous [1969] page 249 . Table 2 appears there

on page 250,) This proves (Cl) => (C2),
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We next give a complex version of theorem B and, at the same time,

a real version of theorem B which allows for complex eigenvalues .

THEOREM D , Let n and k be positive integetrsand F =R, C.

In case F=R assume k > 2, (Thecase k=2 and F=R

is considered in TheoremE.) let d= dimp(F) (=1 or 2). Then

the following are equivalent:

(D1) k< o(n,F) where:
o(n,F)=d+1 for n# 0,+1 mod8
=p(4b,I-‘) for n=8b, 8+ 1;
(D2) either k =d or there exists m with k < p(m,F) and

n=2m-1 2m, or 2m+1;

(D3) there is a linear map:

vy s RFY H_(F)

such that each matrix ¥(a) (a # 0) has n distinct (necessarily

real) eigenvalues;

(D4) there is an odd continuous map:
vt S5 =M (F)

such that each ¥ (o) has n distinct (possibly complex) eigenvalues.
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Proof: The implications (D1)<> (D2) =» (D3) =3»(D4) are essentially

as before; incase k=2 and F = € we can take:

Yn(a) = q'OAn + aan + azcn

where: - -
- .
0 i
-1 0 i
Cn = -1 0 .
cee o 1

(We remark that this works forthecase P =IH aswell, Take d = 4
and let a, be a pure quatemion in the definition of A )

We nowprove (D4)=> (Dl) incase F =@. If k=2 there
is nothing to prove, hence assume k>2, Let Xl(a), ooy )'n (o) e @

be the eigenvalues of v(a). Since vy(-a)= -¥(a) we have:
{hl('a ): LR ] k“('a)} = {"kl(a)v ese n ‘kn(a)}
as sets; we claim that after a suitable re-indexing we have:
A‘i (-a) ='kn-i+l (a)
as in Theorem B, Indeed, if this re-indexing is not possible we must have:
\1(-0) = -7\1(0!)
for more than one value of i . But then the map:
n:8 ~-¢€ =R
given by:
Ma) = \1 (a) - )‘j (o)
is an odd map which is (by (D4)) nowhere vanishing; this contradicts the
Borsuk-Ulam theorem (Spanier [1966], pages 104 and 266).
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Sl

Now the eigenspaces:

EL ={vead™: vy(a)v= A (@)v}

k

are complex line bundles of S and hence (as k > 2) trivial. This

follows from:

1
and the homotopy characterization of bundles over a sphere (see Husemoller
[1962], page 86 corollary 8,4), Hence the bundles Eia have nowhere
zero sections vi(a) and as:

1 _ .n-i+l
E-a = Ea

we may take:
#) vy _jq(-@) = vi(a)

for 1=12,...,[n/2] (andhencefor i# n-1i+1). Incase n

is odd the middle eigenvector v = v,

vy(-a) = g(a)v (a)

for some continuous map g : Sk — S1 . Clearly g satisfies the condition

(t=n-1i+1) satisfies:

that g(a)g(-a)=1. As before we take:

-1 -

xila) = Vi((!) - vn-1+l(°') » i= 1,...,[11/2] ’

oS Sl A

a0 s

xi(a) = vi(a) v, i (@), i=[n/2] +},...,n;
xi(a)=h(a)v1(a), i=n-1+1

RARA

where h: Sk — Sl is so chosen that:

—y
l'd:

x(-a) = t x,(a)

for i=n-1+1, We can then choose m (as in Theorem B) so that

S - . [
PP PP D S T L . PN AP TSPy SPU T Sy - - PRY PP L P
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xi('a)= "xi(a)o i= ln-ooymn

xi(-a) = xi(a) i m+lnooo'n .

The existence of h follows from the following:

LEMMA , A continuous map g: Sk - S1

has the form:
g(a) = +h(a)h(-a)!
for some continuous map h: Sk — S1 if and only if it satisfies:

g(a)g(-a) =1,

Proof of Lemma: "Only if' {s immediate and by inductionon k "if" {s
easy for k > 2: define h on the equator by the induction hypothesis,
extend to the northern hemisphere by T l(Sl) = 0 and extend to the
southern hemisphere by h(-a) = +h(a) g(cv)'l . This argument works also

for k = 2 provided that the restrictionof h to S1 (given by the induction

hypothesis) extends to the disk . Hence consider the case k=1, Take

h to be a square rootof g:

h(az)2 = g(a)
so that:
h(-a)"% = g(-a)! = g(a)
whence:
{(h(ah(-a)}? = g(a)®
as required, To see that h is single valued note that:

h‘ei(‘ew))z - h(-et®? = g(-e1?) = g(el®)) = n(el®)-2

so that:

Le+m),

h(e -!-h(eie).l

whence:
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h(ei(e +Z1|')) = h (eie )

as required . To see that h extends to the disk note that:
2deg(h) = deg(g|S') = 0.

This proves the lemma .

We have now verified (Cé) . As (C6) =p (Cl) we have proved
Theorem D incase F =C .,

We now considerthecase F = R and k>2, Since
Mn(R) C Mn(D) the conclusions of the complex case are available to us;
moreover, if \ (@) is an eigenvalue so is T;-(_T. ¥ \(a) isreal
forsome o 1i.e. isrealforall «; otherwise at the transition we
would have a real eigenvalue of multiplicity two. If n is odd, the middle
eigenvalue (1= n-1+l], )‘1 (-a) = -)\1 (a)) must be recl, else there
would be two . Thus after a suitable reindexing we have three cases for
each index i=1 ,..,0n

(1) 'Xi = )‘1
@ %= N

(3) 'Xi = xj J# n-i+1
where in case (3) we may assume that § = n/2. if {=n/2,

In cases (1) and (3) it is obvious that we can choose the eigenvectors

so as to satisfy (#) above and:

(#4#) v, = Vj if -Xi = Xj ;
we show below that this is possible in case (2) as well, Assuming this

we may define for {,§=1, ..., [n/2]:

]




T
.o

Y >
i Q
N
(§)]

- X =V, -V
2 1 i n-i+l
= x = +v } if -Xi = )'1
h n-1+ = Vi ¥ Vn.inl

x, = Im(v,) }

i i
if N, =\
i n-i+l
*n-141 = Re (vi)
-

F“ Xy = Re(vy = vy 449)
| X, = Im(vy - vy _441)
i n > if t1=xj, 1<},

Xq-141 = Re(vy + vy 44
g Xnogq1 = IV v o))
2
' andincase n isoddand i=n-1+1:
Jg X = V.
5 . Thus Xps e ooy Xy are real and span R"  and satisfy:
E.! xi(-a’g- 1‘“)1 . 1=1, ooo,m,
x(-) = x,(a), i=m+l,,..,n
: where m is either [n/2] or [n/2] +1. Then (as in Theorem B)

we have proved (A6) and are done .

ﬁz ' - We prove that in case (2) we may satisfy (#) and (##) . Let w,
5 be any (normalized) section of gl and define w4 DY
f? wp_iqr(-a) = wla) .
§ Now w_ .. and W  are both sections of R g0,
r-

i
wi % gwn-l-l-l

1

where g: Sk - S is continuous, It follows that ¢ iseven. We

seek h: .?.k - S1

R e MR IR

continuous so that if :

v, = hw1

ey
e 1 oa-

....

/ORI o= S S
p —
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and Vo-idl 'is defined by (#), then (##) obtains, This follows

immediately from the following:

LEMMA: A continuous map ¢g: Sk - S1 has the form:
g(a) = h(a)h(-a)

1

for some continuous h: S8 —-S ifandonly if g is even,.

Proof: As in the last lemma take h to be a square root of g; we get:
g(a)= +hla)h(-a).
If the minus sign occurs replace h by ih. Asbefore h is well-defined,

We remark that it seems quite difficult to prove an analog of (D4) =§ (D1)
incase F=H, even (especially) in case the eigenvalues are real
(unless one adopts the position that the real eigenvalues of a quatermnionic

matrix are always multiple), The reason is that LI 1(83) # 0 for infinitely

k

many k so that the eigenspacequatemions line bundles over S~ need not

be trivial .
We nnw tum to tha loose and left by Theorem D: the case k = 2 and

F=R,

THEOREME ., For each integer n = 2 _the following are equivalent:

(E1) n#2 mod 4;
(E2) there is a linear map:
¥ : R* = M_(R)

such that each Y(« a 0) has n distinct (possibly complex

eigenvalues;




Yy .
IR Y

27

(E3) there is an odd continuous map:
2
yeS8S® = Mn (R)
such thateach v(a) (a € Sz) has n_distinct !possibly complex)
eigenvalues.

Proof : (El) =>» (E2). Fdr a € R3 the complex matrix:
ao al +1az
Ul(a) =
a; - 1a2 -a,

is Hermitian and has trace zero. Hence its eigenvalues are + \(a) where
Ma)>0 for af 0. 'Thematrix (1+4i)U(a) has eigenvalues
-_l:(l+1) \(a). View this ma;rix asa 4 .by 4 real matrix using the inclusion
M,(C) C My(R). It has four distinct elgenvalues  +(1+1) Ma) and |
+(1-1) N(a).  Hence:

¥apla) = diag((1+1)U(a), 2(Q+1)U(a),..., b(1+1)U(a))

has 4b distinct eigenvalues +] (L+1) N(a) (I = l,..., b) and satisfies

(E2) for n=4b, For n=4b+1 adda zerorow and column:
¥ape1 = ¥p @ ¥)
where b4} () =0c¢ Ml(R) . For n= 4b+3 take thedirect sum with
the cross product :
Yape3 = Y4 © ¥5
where:

Y3(¢!)V = aXyv
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For a,ve R3 . - Note that the non-zero ejgenvalues of w3(a) are pure

b e (|
lrllj‘lllrl ‘0‘ O '..‘ .'0.

imaginary and thus distinct from the eigenvalues of y 41’(m) .
(E2) => (E3). Take ¢ =vy|S%.
(E3) => (Ei), Assume n=2mod4 butthat y satisfies (E3). By

L’ Theorem A some eigenvalue xi(a) must vanish for some value of «a; in

i particular xi (a) must be real forsome a . But as in Theorem D, hi (a)
is real for some a ifandonly ifitisreal forall o. Hence (as the
complex eigenvalues occur in conjugate pairs) there mustbe 2m > 0 real

I.[ ‘ eigenvalues:

x}(“)’ xz(a) > oo >\zm(a) .

But now:

| ® () = ¥ (a) - 5 (\yla) + X (e
= is an odd map into GL(n,F ) contradicting Theorem A .




-
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§5. Which Eigenvalues Cross ?

Theorem C has a Hermitian version as well. Let pH(n, F)
(F=RC,H) be given by:
Py(n R = p(3) +1;
pr(® @) = p(n,T) - 1;
py(nEH) = p(Z)+ 53

where we take p(r) =0 if r {is not an integer,

THEOREM P , Iet _n>0 and k>0 beintegersand F =R G, H.

Then the following are equivalent:
(P1) k<py(nF);

(F2) there is & linear map:
o+ Y ~H (F)

with:
k+1
®(R""\0) CGL(n,F);
(F3) there is an odd continuous map:

8% = GL(n, F) n H (F).

(The equivalence (F1)&> (F2) is proved in Adams-Lax-Phillips (1965);
the same reasoning shows (Fl)& (F3).) This has an easy implication
for the crossing problem:

COROLLARY , Ilet n=2m, F=2REC€, or H. Then there is an
odd continuous map
k
VS —- Hn(l-‘)

with:
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)‘m(a) > )‘m+1( )

k

forall ae€ S ( where kl(a) >ese > xn(a) are the eigenvalues of

¥Y({a)) ifandonly if k< pH(n,l'-').

Proof : "only if'* 1is exactly as in Theorem E for "if" let ¢ =@ be
any odd map into GL(n,F) N Hn( F). Then the integer p defined by:
xl(a) > e >xp(a) >0> xpﬂ(ap tee > ).n (a)

OO~ RCIEMMERY - SR GeE
R . « s L + * - -

is independent of a« since no ki(a) vanishes, But xi (-~a) =

Ty
1

! - X n-1+l(°') sowemusthave p=m.

We conclude with the following remark . Theorem B implies
(for k = p(n)) the existence of a multiple eigenvalue but does not give
"‘ any information about which eigenvalue is multiple; the above corollary
implies that the '"middle" eigenvalue is multiple, This is not accidental,
g Indeed in Friedland-Loewy (1976) it was shown that any n(resp. 2n-1)
F dimensional subspace of Hn( R) (resp. Hn(m )) contains a non-zero

matrix with a non-simple first eigenvalue and this result is sharp (i.e. can

b Z 2 S0 ke Al tna
. AR

fail for subspaces of lower dimension), This suggests that the '"higher the

eigenvalue' the ''rarer the crossing',

Ty
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